Difference between revisions of "Technologies"

From Data Physicalization Wiki
Jump to navigation Jump to search
Line 18: Line 18:
  
 
* Niiyama, R., Yao, L., and Ishii, H.  
 
* Niiyama, R., Yao, L., and Ishii, H.  
'''Weight and volume changing device with liquid metal transfer.'''  
+
:'''Weight and volume changing device with liquid metal transfer.'''  
 
:In Proc. TEI (2014), 49–52.
 
:In Proc. TEI (2014), 49–52.
  
Line 44: Line 44:
  
 
* Roudaut, A., Karnik, A., Lo ̈chtefeld, M., and Subramanian, S.  
 
* Roudaut, A., Karnik, A., Lo ̈chtefeld, M., and Subramanian, S.  
'''Morphees: Toward high “shape resolution” in self-actuated flexible mobile devices'''.  
+
:'''Morphees: Toward high “shape resolution” in self-actuated flexible mobile devices'''.  
 
:In Proc. CHI (2013), 593–602.
 
:In Proc. CHI (2013), 593–602.
  
Line 118: Line 118:
  
 
* Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S.  
 
* Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S.  
:'''M-TRAN: Self-reconfigurable modular robotic system. TMECH 7, 4 (2002), 431–441'''.
+
:'''M-TRAN: Self-reconfigurable modular robotic system.  
 +
:TMECH 7, 4 (2002), 431–441'''.
  
 
* Piper, B., Ratti, C., and Ishii, H.  
 
* Piper, B., Ratti, C., and Ishii, H.  

Revision as of 23:33, 27 June 2015

Technologies

This is a list of academic work discussing technologies that could be used for data physicalization, although they have not been specifically presented as such. It is currently very incomplete, but Contribute:you can help expand it.

Also see the enabling technology category in the list of physical visualizations and related artefacts.

2015

  • Yao L., Wang, W., Ou, J, Wang, G., Cheng, C-Y, Steiner, H., Ishii, H.
bioLogic: Natto Cells as Nanoactuators for Shape Changing Interfaces.
CHI 2015 - Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2015.

2014

  • Benko, H., Wilson, A. D., Zannier, F., and Benko, H.
Dyadic projected spatial augmented reality.
In Proc. UIST (2014), 645–655.
  • Niiyama, R., Yao, L., and Ishii, H.
Weight and volume changing device with liquid metal transfer.
In Proc. TEI (2014), 49–52.
  • Olberding, S., Wessely, M., and Steimle, J.
Printscreen: fabricating highly customizable thin-film touch-displays.
In Proc. UIST (2014), 281–290.
  • Seah, S., Drinkwater, B., Carter, T., Malkin, R., and Subramanian, S.
Dexterous ultrasonic levitation of millimeter-sized objects in air.
UFFC 61, 7 (2014), 1233–1236.
  • Seah, S. A., Martinez Plasencia, D., Bennett, P. D., Karnik, A., Otrocol, V. S., Knibbe, J., Cockburn, A., and Subramanian, S.
SensaBubble: A chrono-sensory mid-air display of sight and smell.
CHI 2014 - Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2014., 2863–2872.

2013

  • Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H.
inFORM: Dynamic physical affordances and constraints through shape and object actuation.
In Proc. UIST (2013), 417–426.
  • Romanishin, J., Gilpin, K., and Rus, D.
M-blocks: Momentum-driven, magnetic modular robots.
In Proc. IROS, IEEE/RSJ (2013), 4288–4295.
  • Roudaut, A., Karnik, A., Lo ̈chtefeld, M., and Subramanian, S.
Morphees: Toward high “shape resolution” in self-actuated flexible mobile devices.
In Proc. CHI (2013), 593–602.
  • Steimle, J., Jordt, A., and Maes, P.
Flexpad: highly flexible bending interactions for projected handheld displays.
In Proc. CHI (2013), 237–246.
  • Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H.
PneUI: Pneumatically actuated soft composite materials for shape changing interfaces.
In Proc. UIST (2013), 13–22.

2012

  • Alexander, J., Lucero, A., and Subramanian, S.
Tilt Displays: Designing display surfaces with multi-axis tilting and actuation.
In Mobile HCI (2012), 161–170.
  • Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H.
Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices.
In Proc. UIST (2012), 519–528.
  • Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B.
Radical Atoms: Beyond Tangible Bits, toward transformable materials.
Interactions 19, 1 (2012), 38–51.
  • Kildal, J.
Kooboh: Variable tangible properties in a handheld Haptic-Illusion box.
In Proc. EuroHaptics’12. Springer, 2012, 191–194.
  • Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbæk, K.
Shape-changing interfaces: a review of the design space and open research questions.
In Proc. CHI (2012), 735–744.

2011

  • Gilpin, K., Koyanagi, K., and Rus, D.
Making self-disassembling objects with multiple components in the Robot Pebbles system.
In ICRA (2011), 3614–3621.
  • Lai, C.-H., Niinimaki, M., Tahiroğlu, K., Kildal, J. and Ahmaniemi, T.
Perceived Physicality in Audio-Enhanced Force Input.
Proc. ICMI'11 ACM, (2011), 287-294.
  • Lee, J., Post, R., and Ishii, H.
ZeroN: Mid-air tangible interaction enabled by computer controlled magnetic levitation.
In Proc. UIST (2011), 327–336.

2010

  • Kildal, J.
3D-Press: Haptic Illusion of Compliance when Pressing on a Rigid Surface.
Proc. ICMI'10 ACM, (2010), 8pp.

2009

  • Hiller, J., and Lipson, H.
Design and analysis of digital materials for physical 3d voxel printing.
Rapid Prototyping Journal 15, 2 (2009), 137–149.

2006

  • Schweikardt, E., and Gross, M. D.
roBlocks: A robotic construction kit for mathematics and science education.
In Proc. ICMI (2006), 72–75.

2004

  • Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y.
Lumen: interactive visual and shape display for calm computing.
In SIGGRAPH Emerging Technologies (2004), 17.

2002

  • Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S.
M-TRAN: Self-reconfigurable modular robotic system.
TMECH 7, 4 (2002), 431–441.
  • Piper, B., Ratti, C., and Ishii, H.
Illuminating clay: A 3-D tangible interface for landscape analysis.
In Proc. CHI (2002), 355–362.

1999

  • Underkoffler, J., and Ishii, H.
Urp: A luminous-tangible workbench for urban planning and design.
In Proc. CHI (1999), 386–393.